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Arbitrary Placement of Secondary Nodes, and Error Control, in the Meshless
Local Petrov-Galerkin (MLPG) Method

H.-G. Kim, S. N. Atluri I

Abstract: The truly meshless local Petrov-Galerkin

(MLPG) method holds a great promise in solving boundary

value problems, using a local symmetric weak form as a natu-

ral approach. In the present paper, in the context of MLPG and

the meshless interpolation of a moving least squares (MLS)

type, a method which uses primary and secondary nodes in the

domain and on the global boundary is introduced, in order to

improve the accuracy of solution. The secondary nodes can be

placed at any ]ocation where one needs to obtain a better res-

olution. The sub-domains for the shape functions in the MLS

approximation are defined only from the primary nodes, and

the secondary nodes use the same sub-domains. The shape

functions based on the MLS approximation, in an integration

domain, have a single type of a rational function, which re-

duces the difficulty of numerical integration to evaluate the

weak form. The present method is very useful in an adap-

tive calculation, because the secondary nodes can be easily

added and/or moved without an additional mesh. The essential

boundary conditions can be imposed exactly, and non-convex

boundaries can be treated without special techniques. Several

numerical examples are presented to il]ustrate the performance

of the present method.

keyword: meshless method, MLPG method, local symmet-

ric weak form, MLS, primary node, secondary node.

1 Introduction

Meshless methods are attractive in adaptive error-control in

computations to solve boundary value problems, by adding or

removing nodes without the burdensome task of remeshing,

each time. Several meshless methods have been proposed,

each with certain advantages and disadvantages. These in-

clude: the smooth particle hydrodynamics (SPH) [Gingold and

Monaghan (1977)], the element free Galerkin (EFG) method

[Nayroles, Touzot, and Villon (1992)], the reproducing kernel

particle method (RKPM) [Liu, Jun, and Zhang (1995)], the

hp-cloud method [Duarte and Oden (1996)], the finite point

method [Ofiate, Idelsohn, Zienkiewicz, and Taylor (1996)],

the partition of unity [Babu_ka and Melenk (1997)], the lo-

cal boundary integral equation (LBIE) method [Zhu, Zhang,

and Atluri (1998a,b)], and the meshless local Petrov-Galerkin

(MLPG) method [Atluri and Zhu (1998a,b)]. In these meth-
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ods, the construction of a trial approximation, which does

not rely on element connectivity, is a significant development.

However, most meshless methods, except the LBIEJMLPG

methods, are not truly meshless approaches, since these meth-

ods require background meshes for numerical integration of

the weak form. In these methods, an additional cost is asso-

ciated with the construction of a background mesh, if nodes

are added or deleted in a domain. The MLPG/LBIE methods,

however, are more natural approaches, because these meth-

ods use a ]oca] weak form, and use numerical integration over

sub-domains, which can be of arbitrary shapes such as circles,

ellipses, rectangulars and parallelopipeds in a 2-dimensional

geometry.

In spite of the novel concepts embodied in the MLPG method,

difficulties in the numerical integration for evaluation of the

weak form still persist, as reported by Atluri, Cho, and Kim

(1999a) and Atluri, Kim, and Cho (1999b). This is due to the

complexity of the non-element interpolation functions, which

result from the moving least squares (MLS), the partition of

unity, and the hp-cloud methods. In addition, circular sub-

domains make the numerical integration difficult, because the

intersections between such sub-domains result in highly com-

plex functions in the integration domain. As a result, a large

number of integration points may be required to obtain ac-

curate solutions [Atluri, Cho, and Kim (1999a) and Atluri,

Kim, and Cho (1999b)]. In this paper, we present a viable

method, based on the MLPG, that use secondary nodes to ob-

tain an improvement in the accuracy of solution, without an

additional mesh. The sub-domains for the MLS shape func-

tions are generated only from the primary nodes, and the sec-

ondary nodes use the same sub-domains. The secondary nodes

in the domain, and on the global boundary, do not necessi-

tate the creation of new sub-domains, and the shape functions

for the secondary nodes can be easily defined on the origi-

nal sub-domains, using the MLS approximation. Numerical

integration is carried out over a polygonal cell, which is the

intersection of the sub-domains constructed only from the pri-

mary nodes. As a consequence of the alignment of the bound-

aries of sub-domains and integration domains, the shape func-

tions have a single type of a rational function in a domain of

integration. This greatly alleviates the difficulty in the nu-

merical integration of the weak form in the MLPG method.

The essential boundary conditions can be imposed exactly,

and the non-convex boundaries can be treated without using
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Figure 1 : A schematic representation of the sub-domain _t s,

with node 1 as its center, and cqf2_ as its boundary. The global

domain is f_, with a global boundary F, where displacements

are prescribed at F,, and tractions are prescribed at Ft.

any special techniques. The primary advantage of the present

MLPG method is that the secondary nodes can be easily added

and/or removed, without the burdensome task of constructing

a new mesh, because the secondary nodes use the same sub-

domains defined from the original primary nodes. The use of

the secondary nodes to improve the computational solutions to

a boundary value problem is independent of the mesh derived

from the primary nodes. The present MLPG method offers

a very useful tool for an adaptive calculation, by controlling

errors in the computed results.

There have been several efforts tO develop ways to improve

the accuracy of a numerical solution, using a coarse primary

mesh. Oden, Duarte, and Zienkiewicz (1998) introduced a

new hp-finite element method, by using a combination of the

conventional FEM and the partition of unity, to achieve a dif-

ferent order of basis for each node. In this method, how-

ever, a new global mesh is needed to add nodes for refine-

ments, and a careful choice of the basis functions has to bc

made to prevent their linear dependence. The so-called gen-

eralized finite element (GFEM) [Strouboulis, Babuska, and

Copps (1998)] uses special functions from known analytical

solutions in order to improve the FEM solution, in a way that

is similar to the conventional hybrid FEM [Atluri, Gallagher,

and Zienkiewicz (1983)]. Liu, Uras, and Chen (1998) used a

coupling of the RKPM and the FEM to achieve an adaptive

calculation by adding nodes. Although this coupling of the

RKPM and the FEM has features that are similar to the present

MLPG method, the basic approaches of two methods are quite

different. The enrichment using the RKPM is not based on a

local weak-formulation, and the coupling of the RKPM and

the FEM may not give rise to consistent solutions, because of

the difficulty of numerical integration over an integration do-

main when the boundaries of sub-domains and the integration

domains are not aligned with each other.

influence nodes of point x

F

d

Figure 2 : A schematic illustrating various shapes for sub-

domains, and the region bounding all the nodes in f2 which

may influence the interpolation at a generic x in a meshless

approximation.

The outline of this paper is as follows. In section 2, the local

symmetric weak form is explained, as a key concept in the

MLPG method. In section 3, we review the characteristics of

the MLS approximation and of the numerical integration. In

this part, we emphasis the difficulty of numerical integration

to evaluate the weak form in meshless methods. In section 4,

the concept of "primary" and "secondary" nodes is introduced.

To construct proper shape functions for the primary and the

secondary nodes in the domain and on the global boundary,

weight functions in the MLS approximation should be defined

appropriately over sub-domains, in order to preserve a single

type of a rational function in each integration domain. Towards

this end, we present a method to construct the weight functions

in the MLS approximation, for the primary and the secondary

nodes. Numerical examples in linear elasticity are presented

in section 5. Finally, the conclusions are given in section 6.

2 Tile meshless local Petrov-Galerkin (MLPG) formula-

tion

The equilibrium equations of linear elasticity, in a global do-

main f2 bounded by F, are given by

15ij.j+bi=O in _ (1)

where (3ij is the stress tensor, bi are the body forces, (),j de-

notes 3()/_xj, and a summation over a repeated index is im-

plied. The boundary conditions are assumed to be

ui=_i at F, (2)

Oijnj = "[i at F_ (3)

where F,, and F, are the global boundaries with prescribed

displacements and tractions, respectively. In a conventiona]

Galerkin finite element formulation, the global weak form is
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used to solve the boundary value problem numerically. How-

ever, the MLPG method starts from a weak form over a lo-

cal sub-domain, or a patch, f_ inside the global domain f2 as

shown in Fig. 1. Let {f2]] be a system of overlapping patches

which covers the global domain _, where I(= 1,2,.--,N) in-

dicates a node, and N is the total number of nodes. We implic-

itly introduce the concept of "nodes" with "local domains".

The sub-domain £/_ is thus called the sub-domain of node 1.

The sub-domain f2] can be a circle, a rectangle, or an ellipse

in two dimensions (or a sphere, a parallelopiped, or an ellip-

soid in three dimensions) in the MLPG formulation, but it can

be extended to any kinds of geometry as shown in Fig. 2.

A generalized local weak form of the equilibrium equation is

written as

f_i (GO. J + bJv, dx"2 = 0 (4)

where vi is the test function. Using the divergence theorem in

Eq. 4, we obtain the following local weak-form:

f o,j.j ,dr- f (5)
a_ Ja_

where nj is the outward unit normal to the boundary _f21s.

In the MLPG method, the trial and test functions can be cho-

sen from different spaces. In particular, the test functions need

not vanish on the boundary where the essential boundary con-

ditions are specified. Also, in order to simplify Eq. 5, we

deliberately select the test functions vi such that they vanish

over _f_ts, except when 8f2ts intersects with the global bound-

ary F. This can be easily accomplished in the MLPG method

by using the nodal-test-shape function whose value at the local

boundary 8_ is zero, as long as 8f2_ does not intersect with

F. Using these test functions in Eq. 5, we obtain the following

Local Symmetric Weak Form (LSWF):

f oijvijd_=f t, vidF+ff bividf2 (6)
f2_ ' JF.. fl s

where t i = (Yijtlj, and F_r is the intersection of Y't and the

boundary _f2_ of D._. The MLPG method based on the lo-

cal formulation in Eq. 4 makes clear the basic concepts for

integrating the local weak form in Eq. 6. The MLPG formula-

tion enables us to use different interpolations for the trial and

the test functions. Furthermore, the sizes and shapes of the

sub-domains of trial and test functions, respectively, do not
need to be the same in the MLPG formulation. Therefore, the

MLPG method can include all other meshless methods as spe-

cial cases. In the present method, we use the same function

space for the trial and the test functions as a special case. Note
that the value of the trial function at each point x inside D._,

is influenced by a set of values of the function at an arbitrary

number of nodes in the vicinity of each x, in a non-element,

diffuse interpolation of the moving least square (MLS) type.

Thus, Eq. 6 leads, for each f2I_, to the 1'j' equation in the system

stiffness matrix, involving all the J nodes, whose sub-domains

f2sJ intersect with f2_, such that the integrand in Eq. 6 is non-

zero.

To obtain the discrete equations from the MLPG formulation

in Eq. 6, based on meshless interpolations, which are ex-

plained in the next section, the fol]owing interpolations are

used. The global forms of interpolations for the trial and the

test functions, respectively, can be written as

N

u_(x) : Z OJ(x)_ (7)
J=l

N

= Z (8)
I= I

where qrr(x) and _t(x) are the nodal shape functions for the

trial and the test functions centered at nodes J and I, respec-
^J

tively. In general, in meshless interpolations, _, and u i are

fictitious nodal values. Substitution of Eq. 6 into the MLPG

formulation in Eq. 5 leads to following discretized system of

linear equation:

N

J_=l f (B_')TDBJflJ d_= fv_Vqdr + fnV'bd_ (9)
= d_

where, in two-dimensional space,

o] [ ]t _J ,N = n, 0 n2
,2 0 112 nl

0 I

I _ _1/I , B J :

B v -- V_- _'
,1 ,2

a_

D= _------7 _ 1 0
l 0 0 (l-V)/2

with

_= { E and _={ v v for plane stress_ for plane strain

In the above equations, (nl,n2) is the normal vector at the

boundary, and E and v are the Young modulus and Poisson's

ratio, respectively. The local symmetric weak form in Eq. 9

makes the "stiffness" entries, Ku (which is the stiffness ma-

trix in multi-dimensional space), in the row corresponding to

the node I, and to the nodes J, depending only on the non-zero

values of the integrands in the weak form, over the intersection

off2_ and f2s:. Then, the global equation can be written as

N

_._ Kijfl J = 1"1 (10)
J=l

where

K,,j : f (B1_)rDBJdf2
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Figure 3 : Conceptual explanation of the moving least square

interpolation, in one-dimension.

ft=fr_,VlidF+/f_jVlbdf)

Therefore, in the MLPG method, the usual assembly process

is not required to form a global stiffness matrix. Theoretically,

as long as the union of all local domains covers the global

domain, the equilibrium equation and the boundary conditions

will be satisfied in the global domain _ and its boundary F,

respectively.

3 Characteristics of movingleast square (MLS) approxi-

mation & numerical integration

In this section, we review the characteristics of the moving

least square (MLS) approximation, including some difficulties

in the numerical integration of the weak form to evaluate the

stiffness matrix, which was well explained in Atluri, Cho, and

Kim (1999a) and Atluri, Kim, and Cho (1999b). The MLS

method is generally considered to be one of the schemes to in-

terpolate random data with a reasonable accuracy. Nayroles,
Touzot, and Villon (1992) were the first to use the MLS in-

terpolation in a Galerkin formulation, which they called the

"diffuse element method". The MLS approximation always

preserves completeness up to the order of the basis, and rea-

sonably interpolates the irregularly distributed nodal informa-

tion. However, the nodal shape functions that arise from the

MLS approximation have a very complex nature. They are not

only rational, but they are also of different types across the

boundaries of sub-domains. This complexity results in diffi-

culties with the numerical integration of the weak form in the

MLPG method.

We consider the approximation of a function u(x) in a local

region centered at '_ in a domain f2 as shown in Fig. 3.

The moving least-square approximation starts from a local ap-

proximation in the neighborhood of_, such as

ut°cat(x,YQ = pr(x)a('_) Vx C B(_) (11)

where, B(_) is a sphere centered at _, pT(x) =

[pt(X),p2(x) .... ,pm(X)] is a complete monomial basis

of order m; and a(i) is a vector containing the coefficients

a)(_), j = 1,2 .... ,m which are functions of the space

coordinates x = [x,y,z] r. The commonly used bases in 2-D

problems are the linear basis:

pr(x) = [1 ,x,y] (12)

or the quadratic basis:

pr(x) : [1,x,y, x2,xy, y 2] (13)

The coefficient vector a(_) is determined by minimizing a

weighted discrete L2-norm, defined as:

N

Y(_) = _, wt(x)[pr(xl)a(_) - all 2
/= I

= [P- a(_) - ,_]r. w(_)-[P, a(_) - f_] (14)

where wt(_) is a weight function defined in a sub-domain fY_,

with the node 1 as its center; and with wl(_) > 0 for all i in

the support of wt(_) and wl(,_) = 0 at the boundary of f2_, xl

denotes the value ofx at node I, and the matrices P and W are

defined as

pr(xl)

P= pr(x2) (15)

pT(xN) N×m

w_(_) .-- 0 ]
W_ .........

0 "'" WN(X) NxN

and

(16)

_1 T _l ^_= [u ,u-,--. ,fiN] (17)

Here it should be noted that _t, I = 1,2,. • •, N are the fictitious

nodal values. In fact, only those neighboring nodes J, whose

sub-domains f)sj intersect with the sub-domain f_ of node I,

have an influence in constructing the shape function for node

I. For convenience, _ in the above relations is replaced by x,

because a local point _ can be extended to all points in whole

domain. This is the basic concept of the "moving" procedure,

and we can finally obtain a global approximation. The concep-

tual explanation for the MLS is given in Fig. 3.

The stationary condition of Y(x) with respect to the coeffi-

cients a(x) leads to the following relation:

A(x)a(x) = B(x)fi (18)

where the matrices A(x) and B(x) are given by

N

A(x) = PrWP = _ wl(x)p(xi)pr(xi) (19)
1=1
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B(x) = p:rW = [Wl (x)p(xl),w2(x)p(x2),..-,

WN(X)p(xN)]

The global approximation uh(x) can then be expressed as

N

(20)

.h(x)= _d(x)a _ (21)
I=1

where the nodal shape functions are given by

• r (x) = pr (x)A-t (x)B(x) (22)

In the traditional Galerkin FEM, the 'nodal shape functions'

have a value of unity at the respective node, and an approxima-

tion of the type of Eq. 21 would involve the directly the 'nodal

value' of the field variable. However, in the present MLS ap-

proximation, fi_ are fictitious, and are not exactly equal to the

nodal values of the field variable (see Fig. 3). Inspite of this, it

is instructive to call _1(x) in Eq. 21 'a nodal shape function'.

The MLS interpolation is well defined only when the matrix

A is non-singular. A necessary condition for a well-defined

MLS interpolation is that at least m weight functions are non-

zero (i.e. N >_ m) for each sample point x E _. The partial

derivative of ¢1(x) can be obtained as follows:

m I -
q)_ = '_,[pi,_.(A- B)jt+pj(A-'B,g+A_'B)jt] (23)

j= I

in which A-I = (A-t ),k represents the derivative of the inverse,k
of A with respect to x, which is given by

A -l,_ = -A-IA.kA -l (24)

and the index following a comma indicates a spatial deriva-

tive. Considering that _t(x) = 0 whenever w/(x) = 0, the sup-

port sizes for the nodal shape function and the weight function

have the same value. The nodal shape functions obtained by

the MLS interpolation with ruth order basis can reproduce any

ruth order polynomials g(x) exactly [Belytschko, Krongauz,

Organ, Fleming, and Krysl (1996)], i.e.,

N

= *l(x)g(x/) = g(x) (25)
/= 1

Eq. 25 indicates that the nodal shape function is complete up

to the order of the basis. In order to guarantee the convergence

of the weak formulation with successive increase in the num-

ber of nodes, the shape functions have to be complete. The

smoothness of the nodal shape function 0/(x) is determined

by those.of the basis and of the weight function. The choice

of the weight function is more or less arbitrary as long as the

weight function is positive and continuous.

We can obtain an explicit form for the nodal shape functions,

with a linear basis, in a two-dimensional problem, in order to

/
#

J
Figure 4 : The nodal shape function qbt(x), from the MLS in-

terpolation, which is nonzero in DJs, and which has a different

form in each small intersection, as divided by several circular

sub-domains.

better understand the characteristics of the nodal shape func-

tions. The nodal shape functions can be written as

¢I(x'Y) = b(-_,y) tc°tx'y)'cl(x'y)'c2(x'Y)] x (26)
Y

where the coefficients co(x,y), cl (x,y), c2(x,y), and b(x,y) are

given in Atluri, Kim, and Cho (1999). In general, co(x,y),

ct (x,y), c2(x,y), and b(x,y) are not of the single type of func-

tions, because the sub-domains related to the sub-domain X"21s

make complex intersections as shown in Fig. 4. For exam-

ple, the weight functions in the expressions for the coefficients

co(x,y), c'l (x,y), c2(x,y), and b(x,y) are different at xt and x2

in Fig. 4. In other words, the nodal shape function et(x con-

sists of a different form of a rational function in each small

intersection region, as indicated in Fig. 4.

Although the smoothness of _l(x) can be achieved if a suffi-

cient order.of spline function is used as a weight function, the

shape function in the sub-domain _ consists of several types

of rational functions. It seems to be difficult to integrate these

kinds of compIex functions in the sub-domain, by using a sim-

ple Gaussian quadrature rule, and this causes a difficulty in

the numerical integration of weak forms. As a result, an ac-

curate integration of the shape functions for the construction

of the stiffness matrix is not as trivial as for the finite element

method. Due to different characteristics of functions in differ-

ent sub-regions, we cannot expect accurate numerical integra-

tion even though many numbers of integration points are intro-

duced. Two typical integration methods in meshless methods

are illustrated in Fig 5. Although integration over sub-domain

f_st (Fig. 5b) is more natural than the integration using a back-

ground cell (Fig. 5a), the difficulty of numerical integration

may not be avoided in a simple way.
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J
.(l s

(b)

Figure 5 : Integration methods in meshless methods: (a) using

background celt and (b) iqtegration over sub-domain f_l for

node 1.

To surmount this difficulty, in the present version of the MLPG

approach, polygonal sub-domains are employed so as to lead

to a single type of the MLS shape function all over the inte-

gration domain. The detailed explanation on how to construct

the MLS shape functions, in the polygonal sub-domain _, is

given in the following section.

4 Error control in the MLPG method

This section first introduces the concept of primary and sec-

ondary nodes, and describes the way to construct polygonal

sub-domains _, and the corresponding weight functions, for

the present version of the MLPG method. Later, the advan-

tages of the present approach in the treatment of essential

boundary conditions, and non-convex boundaries, are pointed

out. Next, the simplified procedures for the numerical evalua-

tion of the stiffness matrix is described.

4.1 Polygonal sub-domains and weight functions for pri-

mary and secondary nodes

As explained in the previous section, the difficulty of numer-

ical integration of the weak form is due to the complexity of

Figure 6 :

(a)

o. o..
O..... ...... "X.i

_T "0

i._ io

o

e _ o 6 "o

(b)

Schematic representations for sub-domains with

randomly distributed nodes: (a) for the MLPG method with

circular sub-domains and (b) for the MLPG method with

polygonal sub-domains; in (b), the sub-domain for the sec-

ondary nodes is taken to be the same as that for the nearest

primary node in the present method (The solid circles are pri-

mary nodes; and the open circles are secondary nodes.

the MLS shape functions in an integration domain. To evalu-

ate the stiffness matrix with accuracy, it is necessary to make

the shape functions simple in an integration domain. In our

approach, we introduce the concept of primary and secondary

nodes in the MLPG method, in order to prevent the crossing

of the boundaries of sub-domains in an integration domain,

such that the polygonal sub-domains defined by a mesh from

only the primary nodes also become the sub-domains for the

secondary nodes. As a result, no additional mesh is required

for the secondary nodes, which makes it possible to extend the

original MLPG concept to be a useful tool for error control

and adaptive calculation. The shape functions in a sub-domain

in the present version of the MLPG method may have a sim-

pler form than those in other meshless methods, because of

the alignment of the boundaries of sub-domains. Fig. 6 shows

two types of sub-domains in the MLPG method: circular sub-

domains and polygonal sub-domains that are used by both the
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__n. primary node

dary node

(a) (b)

Figure 7 : Arbitrary secondary-node placement in the MLPG:

(a) primary nodes, and (b) primary and secondary nodes in the

domain. Primary nodes are solid circles, and secondary nodes

are open circles.

primary and the secondary nodes. Since the types of the shape

functions may change across the boundaries of sub-domains,

the first method shown in Fig. 6a may lead to great difficul-

ties in integrating the weak form accurately, for randomly dis-

tributed nodes, due to complex intersections of sub-domains.

However, the present method in Fig. 6b uses simple polygo-

nal intersections of sub-domains, in order to avoid this diffi-

culty. As a result, the shape functions in a polygonal intersec-

tion have a single type of a rational function, because of the

alignment of the boundaries of sub-domains. The advantage

of the second method, in Fig. 6b, is that the secondary nodes

can be placed at any arbitrary locations, where it is needed to

improve the accuracy of the solution, as shown in Fig. 7. This

second method, which is attractive for adaptive error-control

algorithm, is pursued in the present paper. Fig. 8 illustrates the

comparison between finite element mesh/background mesh

that is commonly used in other meshless methods such as

EFG, RKPM and h-p cloud methods; and a background mesh

of the primary nodes only as in the present method. It is impor-

tant to note that in the present MLPG method, the secondary

nodes do not involve an additional mesh. In addition, the sec-

ondary nodes can be added and/or moved without changing a

coarse background mesh constructed from the primary nodes.

Fig. 8a shows a complex and a distorted feature for randomly

distributed nodes in the FEM/EFG/RKPM/h-p cloud methods,

and it is to be noted that a new mesh is required to change

nodal information.

To meet the stated goal, it is important to develop simple

forms of the shape functions for the primary and the sec-

ondary nodes. The weight functions in the MLS approxima-

tion, which ultimately govern the shape functions (see Eqs.

19, 20, and 22), should be defined appropriately to generate

shape functions with simple forms. In the present approach,

the secondary nodes can be placed at arbitrary locations in the

domain _ and on the global boundary F, in order to improve

the deformations in each region, respectively. First, the sec-

ondary nodes which may be placed randomly, in the domain

(a)

4

• 0 O_ @ O 0 • 0

% _o % o° "°°o ° "
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D
oO O0 0 0 o

• primarynode

o secondary node indomain

o secondary node on boundary

(b)

Figure 8 : Comparison between the FEM mesh/background

mesh, and the MLPG: (a) the mesh from the usual Finite Ele-

ment Method as well as the background mesh in EFG, RKPM,

and h-p cloud method, when primary and secondary nodes are

used, and (b) the mesh from primary nodes in the MLPG ap-

proach, whereas the secondary nodes in the present method do

not involve an additional mesh.

l 3 k4
0 0

12 iL

.....
0.!4. i2 - Q

i] o
Z

f primary node

.....0 k3

" k_

?k" secondary node

Figure 9 : A primary-node anchor for a secondary node is the

nearest primary node. I, J, K and L indicate the primary nodes,

and i, j, k and l indicate the set of secondary nodes.
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• primary node

/ O :Tc d   °dc

/

_ w,(x): Ntx>_5(x)

support for the splinc function ;;,i(x)
centered at the secondary node i

Figure 10 : The definition of sub-domains for the primary

node I and the secondary node i in the domain X"2.r i is the ra-

dius of support for spline function to construct weight function

for the secondary node i in the domain.

_, take the sub-domains to be the supports of the nearest pri-

mary nodes, as shown in Fig. 6. The primary nodes on the

global boundary F are excluded from the set of candidate pri-

mary nodes that act as anchors for the secondary nodes in the

domain _, so that the essential boundary conditions can be im-

posed directly on the primary nodes on the global boundary F.

Fig. 9 indicates how to choose the primary nodes that would

be anchors for the secondary nodes in the domain, in a simple

way. Therefore, it is very easy to find the sub-domains for the

secondary nodes in the domain, with an initial coarse back-

ground mesh, constructed only from the primary nodes. We

denote by 1 the primary node and by i the set of the secondary

nodes, related to the primary node I, as shown in Fig. 10.

There are several methods to construct the weight functions on

polygonal sub-domains. In the present paper, we use the linear

finite element shape functions as weight functions in the MLS

approximation for primary nodes, i.e.,

wl(x)=Nt(x) on _ (27)

where Nl(x) is the linear finite element shape function for the

primary node I. Note that the weight function inside a cell

all over the sub-domain _ has only one type of a simple

form. We now discuss the construction of the weight func-

tions in the MLS approximation for the secondary nodes. The

weight functions for the secondary nodes should be zero at

the boundaries of polygonal sub-domains as defined for the

original primary nodes, which is the fundamental requirement

in the MLPG formulation. For this purpose, we choose the

weight functions in the MLS approximation, for the secondary

nodes, to be the product of the linear finite element shape func-

tion Nt(x) centered at a primary node I as in Eq. 27, and the

4th order spline function _i(x) with a circular support centered

weight function for weight function for

primary node I secondary node i

(a)

shape function for shape function for

primary node 1 secondary node i

(b)

Figure 11 : Weight and shape functions: (a) weight functions

and (b) shape functions for the primary node 1 and for the sec-

ondary node i, respectively in the domain. The weight func-

tion for the primary node is the finite element shape function,

and the weight function for the secondary node has a skewed

form which is obtained by multiplying the finite element shape

function centered at I, and the 4 'h order spline function cen-

tered at i.

at the secondary node i, as indicated in Fig. 10. Within this cir-

cular support centered at the secondary node i, the maximum

value of the spline function is at the position of the secondary

node i, and the size of the circular support is set by the maxi-

mum distance from the secondary node i to the primary nodes

in the sub-domain _. We take the weight function for the

secondary node i to be

wi(x) = NI(x)_i(x) on _ : _ (28)

with

_i(x,y)={ 1-6(_)2+8(_)3-3(_)a'0,
0 <_ di <_ ri

di > ri

(29)

where I and i are the primary and the secondary nodes in the

domain f2, respectively, di= Ix - xii is the distance from the

secondary node xi, and the radius ri is the size of the support

chosen in such a way that the circular support for _i(x) covers

the polygonal sub-domain f2_ = _. Note that the values of

weight functions in Eq. 28 for the secondary nodes are zero
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support for the splinc function _vi(x)
centered at the secondary node i

Figure 12 : The definition of the sub-domains for the primary

node I and the secondary node i on the global boundary F.

ri is the radius of support for spline function to construct the

weight function for the secondary node i.

at the boundary of the sub-domain _ = f_. The weight and

the shape functions for the primary and the secondary nodes

in the domain are plotted in Fig. 11. In these figures, the

weight function for the secondary node i has a skewed form,

depending on the location ofxi. The construction of the shape

functions and derivatives for the secondary nodes is identical

to the procedure used for the primary nodes. The weight func-

tions for secondary nodes in the domain satisfy the following
conditions:

wi(x) > 0 on the sub-domain _I = _,

1__ i
wi(x) = 0 at the boundary of the sub-domain x'/s - x'ls,

wi(x) has a simple form of a continuous function inside a cell

all over the sub-domain D.s/ = _.

The deformations on the global boundary cannot be improved,

by adding secondary nodes only in the domain, because the

primary nodes on the global boundary are excluded as can-

didate primary nodes for the secondary nodes in the domain.

This limitation may spoil the quality of numerical solutions,

due to the limitation of only a linear deformation between the

primary nodes on the global boundary. However, improved

deformations on the global boundary are important, in order

to obtain the stresses or the strains correctly on the global

boundary. Also, the convergence of energy may not be at-

tained, without an improvement of the deformations on the

global boundary, even though the convergence of displace-

ments may be obtained using only the secondary nodes in the

domain. Hence, in order to improve the deformations on the

global boundary, some secondary nodes are placed also on

the boundary-segments connecting the primary nodes on the

global boundary. The sub-domains for the secondary nodes on

the global boundary are the cells connecting primary nodes on

weight function for weight function for

secondary node i secondary node j

(a)

shape function for shape function for

secondary node i secondary node j

(b)

Figure 13 : (a) weight functions and (b) shape functions for

secondary nodes i and j on the global boundary F.

the global boundary, as shown in Fig. 12. The weight func-

tions for the secondary nodes on the global boundary can be

constructed as

wi(x) = N'(x)i0i(x) in _ (30)

where g;i(x) is the 4 n, order spline function in Eq. 29, where

ri is the maximum distance from the secondary node i to the

primary nodes in the sub-domain _, and Nm(x) in the present

method is taken by

1

Nm(x) = ,_rn(_,.q) = 7( 1 __2)( 1 _rl) (31)

In the above equation, the _ and rl are the coordinates defined

on the master domain, as in the finite element method. The

weight and the shape functions for the secondary nodes on the

global boundary are plotted in Fig. 13. In these figures, the

secondary nodes i and j on the global boundary between two

primary nodes have the same sub-domain _ and _J. Conse-

quently, the linear deformations on the global boundary can be

improved by adding the secondary node on the global bound-

ary.

To alleviate the difficulty in the numerical integration of the

weak form, it is important to preserve a single type of a contin-

uous function in an integration domain. Since the MLS shape

functions, which are the rational functions as in Eq. 26, are
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Figure 14 : Schematic representation of the shape functions

for the secondary nodes i and j, which are located between the

primary node I and J on the global boundary F.

." I o

(a) (b)

Figure 15 : Sub-domains for a domain with non-convex

boundaries (a) for other meshless methods with circular sub-

domains, and (b) for the present MLPG method.

expressed in terms of the weight functions and the basis in the

MLS approximation, the integrand in the weak form within an

integration domain consists of a continuous rational function

in the presently described formulation. Again, the emphasis is

placed on the fact that the shape functions for the primary and

the secondary nodes have a single form of a rational function

all over the integration domain, because there is no crossing

of the boundaries of the sub-domains in the domain for inte-

gration. Although the MLS shape functions in a sub-domain

become more complex as the number of the secondary nodes

increases, a single form of a rational function may be much

easier to integrate numerically, than the shape functions with

different types of functions as in other meshless methods.

In summary, the secondary nodes can be added at arbitrary

positions in the domain and on the global boundary, after con-

structing the initial polygonal sub-domains from the primary

nodes, and errors in numerical results can be controlled by

adding and moving the secondary nodes. Thus, to start with,

secondary node i

I i
f2s= f2 s

primary node I

• integration cell

integration point

Figure 16 : Numerical integration inside each integration cell
I_ i

in the sub-domain _s - s'2_.

only a few primary nodes may be used, and later, a random

pattern of the secondary nodes may be introduced, in an adap-

tive fashion to control the error of the numerical solution.

4.2 Treatments of boundary conditions and non-convex

boundaries

One major difficulty in the meshless methods is considered

to be the imposition of the essential boundary conditions, be-

cause, in general, the approximation functions do not satisfy

the Kronecker-delta condition _l(xj) = 81.t at the boundary.

Most meshless methods have used Lagrange multipliers or

penalty methods to impose the essential boundary conditions

[Zhu and Atluri (1998)]. In some cases, meshless interpo-

lations and FEM shape functions have been combined [Be-

lytschko, Organ, and Krongauz (1995)], leading to a complex

interface element in the regions of intersection of FEM and

meshless shape functions. However, in the present method

the Kronecker-delta condition is satisfied at the primary nodes

on the global boundary, because the primary nodes on the

global boundary are not candidates as anchors for the sub-

domains for the secondary nodes in the domain, and because

the weight functions, except those for the primary nodes on the

global boundary, are zero at this point. Therefore, the essen-

tial boundary conditions can be imposed exactly at the primary

nodes on the global boundary. On the contrary, the Kronecker-

delta condition may not be satisfied at the secondary nodes

on the global boundary, as a result of non-zero values for the

weight functions at the secondary nodes. Since the deforma-

tions on the global boundary depend only on the primary and

the secondary nodes on the boundary-segment between the pri-

mary nodes on the global boundary, the fictitious nodal values

for the secondary nodes on the global boundary can be evalu-

ated in an easy way. Fig. 14 illustrates two secondary nodes

on the boundary-segment between two primary nodes on the
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Figure 17 : Geometric description for numerical experiments: (a) a cantilever beam, (b) a plate with a hole, (c) concentrated

load on a semi-infinite plate, and (d) a center cracked plate in tension.

global boundary, and the following equation can be written as

¢1(xl) ¢i(xl) ¢J(xl) ¢J(xl)
,l(xl) ¢i(x/) OJ(x/) _J(x/)
¢I(x_) ,i(x_) ,J(xl) ¢](x/)
¢/(xl) oi(xl) ¢J(x3 _J(xl)

fii iTi

fiJ _J

(32)

where t_ is the fictitious nodal displacement in MLS approx-

imation, and _ is the prescribed displacement on the global

boundary. As explained before, the following conditions are

satisfied at the primary nodes:

_/=_1 and fi'/=Yfl (33)

We can evaluate the fictitious nodal values fii and M at the

secondary nodes on the global boundary from Eq. 32, and

the essential boundary conditions can be imposed directly in

the computation. Consequently, we can impose the essential

boundary conditions exactly at the primary and the secondary

nodes on the global boundary.

The other meshless methods with circular sub-domains may

lead to a difficulty near boundaries when the domain is

not strictly convex [Organ, Fleming, Terry, and Belytschko

(1996)]. In Fig. 15a, the deformation at the node i on the upper

part of edge directly affects the deformations on the lower part,

which is invisible to an observer at the node i. Some special

treatments, as introduced by Organ, Fleming, Terry, and Be-

lytschko (1996) to solve the problems with non-convex bound-

aries, are required in other meshless methods. In the present

method, however, there is no this difficulty with a non-convex

boundary, because the sub-domains for the primary and the

secondary nodes are simple polygonal-local domains as shown

in Fig. 15b. Therefore, we can easily deal with problems with

non-convex boundaries using the present method.

4.3 Numerical integration of weak forms

To evaluate the stiffness matrix from the weak form, it is nec-

essary to use a numerical quadrature since analytical integra-

tion is all but impossible in general. The numerical integra-

tion of the stiffness matrix usually plays an important role

in the convergence of numerical solutions in meshless meth-

ods. Fig. 5 shows that the schematic features of two integra-

tion methods in meshless methods. The first method, using

a background mesh, has been used in most meshless meth-
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Figure 18 : Comparison of the MLPG and the exact solutions, for the problem of a cantilever beam. Displacements and

distribution of stress 611 (a) without secondary nodes, (b) with 50 secondary nodes, (c) with 100 secondary nodes, and (d) with

200 secondary nodes in the domain.

otis including the EFG, RKPM, and hp-clouds. Dolbow and

Belytschko (1999)have already indicated that the integration

using the background mesh is not adequate, to accurately in-

tegrate the terms in the stiffness matrix, when irregularly dis-

tributed nodes are used. They presented a method to reduce er-

rors in numerical integration, by making the integration cell to

be aligned with the boundaries of sub-domains. As explained

before, the present method, however, leads to a simple type of

a rational function inside a cell in a sub-domain. Therefore,

a cell (a quadrilateral for example) in a sub-domain (_ = f/_

for the MLPG method) is taken as an integration domain in

the present MLPG formulation, to obtain accurate numerical

integration for the stiffness matrix. The schematic of the inte-

gration method is presented in Fig. 16.

Gaussian quadrature is commonly employed to numerically

evaluate the integrals in the weak forms. The Gaussian quadra-

ture can exactly integrate the polynomials of order 2n - 1 in a

spatial direction, where n is the number of integration points in

that spatial coordinate. Since inside an integration domain the

shape functions are rational functions in the present method,

the Gaussian quadrature may not be adequate to evaluate inte-

grals in the present method properly. However, the accuracy of

numerical integration may be controlled by the number of in-

tegration points, taking a proper level of polynomial as an ap-

proximation for these rational functions. In general, the more

secondary nodes are involved in the sub-domain, the more in-

tegration points are required. To find an efficient integration

rule for rational functions is still an open question, to improve

the performance of this method while using only a small num-

ber of integration points.

5 Numerical experiments

Several problems in two-dimensional linear elasticity are

solved to illustrate the effectiveness of the present method

The numerical results of the MLPG method as applied to

problems in two-dimensional elasto-statics, specifically a can-

tilever beam, a plate with a hole (circular and elliptic holes),



Arbitrary placement of secondary nodes, and error control, in the Meshless Local Petrov-Galerkin (MLPG) method 23

concentrated load on a semi-infinite plate, and a center cracked

plate in tension as shown in Fig. 17, are now discussed. The

Young modulus and the Poisson's ratio are E = 1.0 × 10 l° and

v = 0.25, respectively. We use the displacement and energy

norms defined as

u I1=(fouTUa_) ½ (34)11

_: D_df2) : (35)

The relative errors for 1[ u 11and l[ _ [I are defined as

IIu....... ue_c' II
r. = (36)

IIE.... ee_o.II
"_= IIE_._,II (37)

The linear basis in the MLS approximation is used in the nu-

merical examples.

5.1 Cantilever beam

We first consider a cantilever beam problem shown in Fig. 17a.

The exact solution for this problem is given in Timoshenko and

Goodier (1970) as

u, = -_--_(y- )[3x(2L-x)+(2+v)y(y-D)] (38)

e x2
u2 = -_-E_ [ (3L-x)+ 3v(L-x)(y- D)2+ 4+5v----_-D2x] (39)

where

D 3

12

The stresses corresponding to the above are

o,t =- (L-x)(y--_) (40)

o22 = 0 (41 )

PY, _,
ol2 = - -_ _y - u) (42)

We use regularly distributed primary nodes for a model with

D = 4.0 and L = 8.0 to examine the effects of the secondary

nodes. The essential and traction boundary conditions are ap-

plied at the left and right sides of the beam, respectively, and

P in Eqs. 38-42 is (-) 1.0 x l0 s. The solution without the sec-

ondary nodes is exactly the same as that of the finite element

method, as shown in Fig. 18a. We distribute 50, 100, and

200 secondary nodes randomly in the domain through gener-

ating random numbers. To improve the deformations on the

global boundary, the secondary nodes are placed between the

primary nodes on the global boundary, as shown in Fig. 18.

We use 3 x 3, 5 x 5, and 8 x 8 integration points in an inte-

gration domain for 50, 100, and 200 secondary nodes in the

10"

lff'

energy

g

10" o.o ;o ,c;,o ,so

sqrt ( number of secondary nodes in domain )

Figure 19 : Convergence for the displacement and the en-

ergy norms in a cantilever beam problem, with irregularly dis-

tributed secondary nodes in the domain.

domain, respectively. It is required to increase the number of

integration points as the secondary nodes are added. Com-

parison between the MLPG and the exact solutions arc given

in Fig. 18. In these results, the relative displacement error

changes from 9.26% to 0.38%, and the relative energy error

decreases from 31.37% to 10.74% by adding 200 secondary

nodes. In Fig. 19, the convergences in the relative displace-

ment and energy norms for the MLPG are presented with a

representative nodal density x/-_, where N_ is the number of

secondary nodes in the domain. The present method gives bet-

ter results than the solutions without the secondary nodes. Par-

ticularly, the relative displacement error decreases rapidly even

though the secondary nodes are added randomly.

5.2 Infinite plate with a hole

We consider an infinite plate with a circular hole of radius a

(b = a in Fig. 17b). The plate is subjected to a uniform tension,

if0 : 1.0 × 109, in the x-direction, at infinity as shown in Fig.

17b. The exact solutions for stresses are

a 2 3 3a4 cos40] (43)
c_tl = c_0[l - -7(_ cos20 + cos40) +

a 2 , 1 3a 4 _

012 = o0[-_-( _ sin 20 + sin40) + _-_ sin40] (44)

a 2 ( 1 3a4 4
022 = O0[-_- _ cos 20 - cos40) - _ cos 0] (45)

where (r, 0) are the polar coordinates, and 0 is measured from

the positive x-axis in a counterclockwise direction. The cor-

responding displacements, in the plane stress case, are given
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Figure 20 : Comparison of the MLPG and the exact solutions, for the problem of a plate with a circular hole. Displacements

and distribution of stress o_ (a) without secondary nodes, (b) with 50 secondary nodes, (c) with 100 secondary nodes, and (d)

with 200 secondary nodes in the domain.

by

] + v l ^ 2 a 2 1 a 2
_( ----cosO+ --cos30ul = __ 1-_ rc°sO+ 1 +v r 2 r

l a4

2 r3 cos 30) (46)

l+v v ^ 1-va 2 la 2
. sin0+ -- sin30u, = --_-(_(- l--_rsinu 1 +V r 2 r

1 a 4

2 r3 sin 30) (47)

Due to symmetry, only a part, 0 < r < 4, of the upper right

quadrant of the plate is modeled as shown in Fig. 17b. Sym-

metry conditions are imposed on the left and bottom edges, i.e.

Ul = 0, t2 = 0 is prescribed on the left edge and u2 = 0, t_ = 0

on the bottom edge, and the inner boundary at a = 1.0 is trac-

tion free. The traction boundary conditions, as given by the

exact solutions, are imposed on the outer boundary at r = 4.0.

Secondary nodes are distributed randomly in the domain, as

shown in Fig. 20. 4 x 4, 6 x 6, and 9 x 9 integration points in

an integration domain are used for models with 50, I00, and

200 secondary nodes in the domain, respectively. One sec-

ondary node, on each boundary-segment between the primary

nodes on the global boundary, is added to improve the defor-

mations on the global boundary. The comparison between the

MLPG and the exact solutions are shown in Fig. 20.
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Figure 21 : Convergence for the displacement and the energy

norms in the problem of a plate with a circular hole, with ir-

regularly distributed secondary nodes in the domain.

The relative displacement error decreases from 5.93% to

0.48%, and relative energy error decreases from 11.51% to

4.69% by adding 200 secondary nodes in the domain. The

convergence with the number of nodes is shown in Fig. 21

with a representative nodal density x/_s for the irregularly dis-

tributed secondary nodes in the domain.

Agreement between the MLPG and the exact solutions is ex-

cellent in this example. As a more severe case, we consider a

plate with an elliptic hole for aspect ratios of 4 : 1, and 8 : 1, re-

spectively. The stress concentration factors for these elliptical-

hole problems in an infinite plate under uniform traction are

9.0 and t 7.0, respectively. The secondary nodes in the domain

and on the global boundary are added near the elliptical hole

where the major-axis is of the ellipse intersects the hole sur-

face. The models with randomly distributed (25, 50, 100 and

200) secondary nodes in the domain, use 4 x 4, 6 x 6, 9 x 9 and

1 ] x I 1 integration points in an integration cell, respectively.
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Figure 22 : The MLPG solutions for the problem of a plate with an elliptical hole: (b/a = 4.0 and b/a -- 8.0). Displacements
and distribution of stress (_i (a) without secondary nodes, (b) with 25 secondary nodes, (c) with 50 secondary nodes, (d) with
100 secondary nodes, and (e) with 200 secondary nodes in the domain.
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Figure 23 : Convergence for the displacement and the energy

norms in the problem of a plate with an elliptical hole, with

irregularly distributed secondary nodes in the domain.

Note that the sub-domains not influenced by the secondary

nodes require only 2 x 2 integration points because of sim-

ple shape functions in this region. Fig. 22 shows the stress

distributions by adding 25, 50, 100 and 200 secondary nodes.

The stress a,i near the tip of the major-axis of the elliptical

hole is plotted in Fig. 23 with a representative nodal density

x/_s. The results show that the stress concentration factors ap-

proach the exact values as the number of the secondary nodes
increases.

5.3 Concentrated load on a semi-infinite plate

Consider the concentrated load on an infinite plate as shown

in Fig. 17c. The plate is assumed to be of unit width so that

the concentrated load is equal to q. The exact solution for this

problem [Saada (1974)] is given by

2q cos 0
c_r - (48)

r

coo = or0 = Czz = 0 (49)

2q cos0
er_ -- (50)

nE r

2vq cos 0
e00 - (51)

nE r

e,e = 0 (52)

The displacements are

2q (1
u_ = -_ c°sOlndr _E-v)q 0 sin0 (53)

q(1 +v) sin0- 2q ! (1 -v)q0cos 0uo - nE _ sin Oht_ nE
(54)

where d is a distance from the point of the concentrated load

q. We use the right half model with 4.0 x 4.0 size as shown

in Fig. 17c. The concentrated load q is 1.0 × 109 in this ex-

ample. Since the displacements are singular at the point of

application of the concentrated load q, we use the model with

a small circular hole a = 0.5. The symmetric boundary condi-

tion is applied at the left side of the half model, and tractions

are applied at the other boundaries from the exact solution. In

numerical calculation, the distance d is set to be 4.0 to give

the fixed boundary condition at the center. Convergence stud-

ies are carried out using three different numbers of secondary

nodes, namely 50, 100, and 200. 4 × 4, 6 × 6, and 9 × 9 inte-

gration points are used in an integration domain for these three

models. The comparison between the MLPG and the exact so-

lutions is plotted in Fig. 24, and the convergence is shown in

Fig. 25. In this example, we obtain the similar trends as shown

in the problems of a cantilever beam and a plate with a hole.

5.4 Center cracked plate in tension

Next, we consider a center cracked plate in tension. Due to

symmetry, the right half as shown in Fig. 17d is modeled un-

der plane stress condition. The size of model is h = w = 4 0,

and the crack length is a = 2.0. The applied stress <50 at the

top and the bottom is 5.0 x 108 in this example. The symmetric

condition is applied on the left side. Of primary importance in

a crack problem is the determination of the parameters which

characterize the singularity of the stress fields in the vicinity of

a crack tip. The mode I stress intensity factor KI, as a charac-

terizing parameter for the crack, is computed from J-integral

using domain integration [Nikishkov and Atluri (1987) and

Anderson (1991)]. The size of the J-integral domain is cho-

sen as 2bt x 2b2 = 2.0 x 2.0. The stress intensity factor Kt

is evaluated by Kt = _ for plane stress, and the target so-

lution for this problem is KffKo = 1.325 where K0 = Oov"_

[Tada, Paris, and Irwin (1977) and Wu and Carlsson (1991)].

In this numerical example, we use regularly distributed pri-

mary nodes as shown in Fig. 26, and secondary nodes are

added randomly near the crack tip. 4x4, 6×6 and 8x8

integration points are used for models with 25, 50 and 100

secondary nodes in the domain, respectively. However, only

2 x 2 integration points are used in the sub-domains which are

not influenced by the secondary nodes. The stress _22 at the

crack tip is higher as the number of the secondary nodes near

the crack tip increases. By adding secondary nodes on the

crack lines, the improved deformations near the crack tip are

obtained as shown in Fig. 27. The deformations of the crack

lines are very important to recover the stresses correctly near

the crack tip. In Fig. 28, the errors in the stress intensity fac-

tors evaluated from J-integral are plotted against the number

of the secondary nodes. The stress intensity factor approaches

the target solution as the number of secondary nodes in the

domain increase.
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Figure 24 : Comparison of the MLPG and the exact solutions for the problem of a concentrated load on a semi-infinite plate.

Displacements and distribution of stress o_ (a) without secondary nodes, (b) with 50 secondary nodes, (c) with 100 secondary

nodes, and (d) with 200 secondary nodes in the domain.

6 Concluding remarks

A method, based on the meshless local Petrov-Galerkin

(MLPG) concept for solving boundary value problems has

been presented in this paper. The concept of primary and sec-

ondary nodes was introduced, and the weight functions for

primary and secondary nodes were defined to yield a single

type of a rational function all over the integration domain. The

approach presented in this paper alleviates a major difficulty

in the numerical integration to evaluate weak forms in other

meshless methods. Additional mesh for the secondary nodes

is not required to improve the accuracy of solution. The essen-

tial boundary conditions are easily taken care of as in FEM,

and the non-convex boundaries can be treated without a spe-

cial technique.

A clear advantage of the present method is that the secondary

nodes can be placed at any random locations, without the bur-

densome task of constructing a new mesh to enrich the so-

lution. The present MLPG method can control errors in nu-

merical results by adding the secondary nodes, using only

the sub-domains constructed from the primary nodes. There-

fore, the present method can be a useful tool for error con-

trol and adaptive calculation in the field of computational me-

chanics. The numerical experiments show that the present

method is very efficient for adaptive error control by placing
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Figure 25 : Convergence for the displacement and the energy

norms in the problem of a concentrated load on a semi-infinite

plate, with irregularly distributed secondary nodes in the do-

main.

secondary nodes arbitrarily in the domain and on the global

boundary. The present method can be easily implemented in

three-dimensional problems with the same advantages. Fur-

ther results based on the current approach will be presented in

a series of forthcoming papers.
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Figure 26 : The MLPG solutions for the problem of a center cracked plate. Displacements and distribution of stress _22 (a)

without secondary nodes, (b) with 25 secondary nodes, (c) with 50 secondary nodes, and (d) with 100 secondary nodes in the

domain.
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Figure 27 : Deformation near crack tip, including secondary

nodes on the crack line.
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Figure 28 : Errors in the evaluation of stress intensity factor,

versus the number of secondary nodes in the domain for a cen-

ter cracked p]ate problem.


